Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 11.396
Filtrar
1.
Phytomedicine ; 128: 155403, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564920

RESUMO

BACKGROUND: Cardiovascular disease is one of the main causes of global mortality, and there is an urgent need for effective treatment strategies. Gut microbiota-dependent metabolite trimethylamine-N-oxide (TMAO) promotes the development of cardiovascular diseases, and shizukaol C, a natural sesquiterpene isolated from Chloranthus multistachys with various biological activities, might exhibit beneficial role in preventing TMAO-induced vascular inflammation. PURPOSE: The purpose of this study was to investigate the anti-inflammatory effects and the underlying mechanisms of shizukaol C on TMAO-induced vascular inflammation. METHODS: The effect and underlying mechanism of shizukaol C on TMAO-induced adhesion molecules expression, bone marrow-derived macrophages (BMDM) adhesion to VSMC were evaluated by western blot, cell adhesion assay, co-immunoprecipitation, immunofluorescence assay, and quantitative Real-Time PCR, respectively. To verify the role of shizukaol C in vivo, TMAO-induced vascular inflammation model were established using guidewire-induced injury on mice carotid artery. Changes in the intima area and the expression of GSTpi, VCAM-1, CD68 were examined using haematoxylin-eosin staining, and immunofluorescence assay. RESULTS: Our data demonstrated that shizukaol C significantly suppressed TMAO-induced adhesion molecule expression and the bone marrow-derived macrophages (BMDM) adhesion in vascular smooth muscle cells (VSMC). Mechanically, shizukaol C inhibited TMAO-induced c-Jun N-terminal kinase (JNK)-nuclear factor-kappa B (NF-κB)/p65 activation, and the JNK inhibition was dependent on the shizukaol C-mediated glutathione-S-transferase pi (GSTpi) expression. By further molecular docking and protein-binding analysis, we demonstrated that shizukaol C directly binds to Keap1 to induce Nrf2 nuclear translocation and upregulated GSTpi expression. Consistently, our in vivo experiment showed that shizukaol C elevated the expression level of GSTpi in carotid arteries and alleviates TMAO-induced vascular inflammation. CONCLUSION: Shizukaol C exerts anti-inflammatory effects in TMAO-treated VSMC by targeting Keap1 and activating Nrf2-GSTpi signaling and resultantly inhibits the downstream JNK-NF-κB/p65 activation and VSMC adhesion, and alleviates TMAO-induced vascular inflammation in vivo, suggesting that shizukaol C may be a potential drug for treating TMAO-induced vascular diseases.

2.
Colloids Surf B Biointerfaces ; 238: 113884, 2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38565006

RESUMO

Benzalkonium chloride (BAK) is the most commonly-used preservative in topical ophthalmic medications that may cause ocular surface inflammation associated with oxidative stress and dry eye syndrome. Glutathione (GSH) is an antioxidant in human tears and able to decrease the proinflammatory cytokine release from cells and reactive oxygen species (ROS) formation. Carboxymethyl cellulose (CMC), a hydrophilic polymer, is one of most commonly used artificial tears and can promote the corneal epithelial cell adhesion, migration and re-epithelialization. However, most of commercial artificial tears provide only temporary relief of irritation symptoms and show the short-term treatment effects. In the study, 3-aminophenylboronic acid was grafted to CMC for increase of mucoadhesive properties that might increase the precorneal retention time and maintain the effective therapeutic concentration on the ocular surface. CMC was modified with different degree of substitution (DS) and characterized by Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy. Phenylboronic acid (PBA)-grafted CMC hydrogels have interconnected porous structure and shear thinning behavior. Modification of CMC with high DS (H-PBA-CMC) shows the strong bioadhesive force. The optimal concentration of GSH to treat corneal epithelial cells (CECs) was evaluated by cell viability assay. H-PBA-CMC hydrogels could sustained release GSH and decrease the ROS level. H-PBA-CMC hydrogels containing GSH shows the therapeutic effects in BAK-damaged CECs via improvement of inflammation, apoptosis and cell viability. After topical administration of developed hydrogels, there was no ocular irritation in rabbits. These results suggested that PBA-grafted CMC hydrogels containing GSH might have potential applications for treatment of dry eye disease.

3.
EMBO Mol Med ; 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38565805

RESUMO

The emergence of drug-resistant Enterobacteriaceae carrying plasmid-mediated ß-lactamase genes has become a significant threat to public health. Organisms in the Enterobacteriaceae family containing New Delhi metallo-ß-lactamase­1 (NDM-1) and its variants, which are capable of hydrolyzing nearly all ß-lactam antibacterial agents, including carbapenems, are referred to as superbugs and distributed worldwide. Despite efforts over the past decade, the discovery of an NDM-1 inhibitor that can reach the clinic remains a challenge. Here, we identified oxidized glutathione (GSSG) as a metabolic biomarker for blaNDM-1 using a non-targeted metabolomics approach and demonstrated that GSSG supplementation could restore carbapenem susceptibility in Escherichia coli carrying blaNDM-1 in vitro and in vivo. We showed that exogenous GSSG promotes the bactericidal effects of carbapenems by interfering with intracellular redox homeostasis and inhibiting the expression of NDM-1 in drug-resistant E. coli. This study establishes a metabolomics-based strategy to potentiate metabolism-dependent antibiotic efficacy for the treatment of antibiotic-resistant bacteria.

4.
Angew Chem Int Ed Engl ; : e202401250, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38576254

RESUMO

A nano-immunomodulator (R-NPT NP) comprising a tumor microenvironment (TME) activable resiquimod (R848) and a π-extended NIR-absorbing naphthophenanthrolinetetraone (NPT) has been engineered for spatiotemporal controlled photothermal immunotherapy. R-NPT NP demonstrated excellent photostability, while R848 promoted synergistic immunity as a toll-like receptor 7/8 (TLR7/8) agonist. Upon accumulation at the tumor site, R-NPT NP released R848 in response to redox metabolite glutathione (GSH), triggering dendritic cell (DC) activation. The photothermal effect endowed by R-NPT NP can ablate tumors directly and trigger immunogenic cell death to augment immunity after photoirradiation. The synergistic effect of GSH-liable TLR7/8 agonist and released immunogenic factors leads to a robust evocation of systematic immunity through promoted DC maturation and T cell infiltration. Thus, R-NPT NP with photoirradiation achieved 99.3% and 98.2% growth inhibition against primary and distal tumors, respectively.

5.
Plant Physiol Biochem ; 210: 108597, 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38598868

RESUMO

BACKGROUND: Shortawn foxtail (Alopecurus aequalis Sobol.) is a noxious weed in China. The resistance of A. aequalis developed rapidly due to the long-term application of acetolactate synthase (ALS)-inhibiting herbicides. Here, a suspected mesosulfuron-methyl-resistant A. aequalis population, Aa-R, was collected from a wheat field in China. RESULTS: A dose‒response test showed that the Aa-R population has evolved a high level of resistance to mesosulfuron-methyl, and its growth was suppressed by imazamox, pyroxsulam and bispyribac-sodium. ALS gene sequence analysis revealed that a known resistance-related mutation (Pro-197-Thr) was present in the Aa-R population. Moreover, ALS gene overexpression was detected in the Aa-R population. The mesosulfuron-methyl resistance could be reversed by cytochrome P450 monooxygenase (CYP450) and glutathione S-transferase (GST) inhibitors. In addition, enhanced metabolism of mesosulfuron-methyl was detected in the Aa-R population compared with the susceptible population. NADPH-cytochrome P450 reductase and GST activities were strongly inducible in the Aa-R population. One CYP450 gene, CYP74A2, and one GST gene, GST4, were constitutively upregulated in the Aa-R population. Molecular docking results showed the binding affinity of CYP74A2 and GST4 for the tested ALS-inhibiting herbicides, respectively. CONCLUSION: This study confirmed that target-site resistance and non-target-site resistance involving CYP450 and GST were the main mechanisms involved in resistance in the mesosulfuron-methyl-resistant A. aequalis population.

6.
Ecotoxicol Environ Saf ; 276: 116290, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38599154

RESUMO

Thallium (Tl) is a non-essential metal mobilized through industrial processes which can lead to it entering the environment and exerting toxic effects. Plants are fundamental components of all ecosystems. Therefore, understanding the impact of Tl on plant growth and development is of great importance for assessing the potential environmental risks of Tl. Here, the responses of Arabidopsis thaliana to Tl were elucidated using physiological, genetic, and transcriptome analyses. Thallium can be absorbed by plant roots and translocated to the aerial parts, accumulating at comparable concentrations throughout plant parts. Genetic evidence supported the regulation of Tl uptake and movement by different molecular compartments within plants. Thallium primarily caused growth inhibition, oxidative stress, leaf chlorosis, and the impairment of K homeostasis. The disturbance of redox balance toward oxidative stress was supported by significant differences in the expression of genes involved in oxidative stress and antioxidant defense under Tl exposure. Reduced GSH levels in cad2-1 mutant rendered plants highly sensitive to Tl, suggesting that GSH has a prominent role in alleviating Tl-triggered oxidative responses. Thallium down-regulation of the expression of LCHII-related genes is believed to be responsible for leaf chlorosis. These findings illuminate some of the mechanisms underlying Tl toxicity at the physiological and molecular levels in plants with an eye toward the future environment management of this heavy metal.

7.
Artigo em Inglês | MEDLINE | ID: mdl-38599899

RESUMO

Selenium (Se) is an essential trace element, which is inserted as selenocysteine (Sec) into selenoproteins during biosynthesis, orchestrating their expression and activity. Se is associated with both beneficial and detrimental health effects; deficient supply or uncontrolled supplementation raises concerns. In particular, Se was associated with an increased incidence of type 2 diabetes (T2D) in a secondary analysis of a randomized controlled trial (RCT). In this review, we discuss the intricate relationship between Se and diabetes and the limitations of the available clinical and experimental studies. Recent evidence points to sexual dimorphism and an association of Se deficiency with gestational diabetes mellitus (GDM). We highlight the emerging evidence linking high Se status with improved prognosis in patients with T2D and lower risk of macrovascular complications.

8.
Sci China Life Sci ; 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38602587

RESUMO

Tumor cells establish a robust self-defense system characterized by hypoxia, antioxidant overexpression, DNA damage repair, and so forth to resist radiotherapy. Targeting one of these features is insufficient to overcome radioresistance due to the feedback mechanisms initiated by tumor cells under radiotherapy. Therefore, we herein developed an engineering biomimetic nanosystem (M@HHPt) masked with tumor cell membranes and loaded with a hybridized protein-based nanoparticle carrying oxygens (O2) and cisplatin prodrugs (Pt(IV)) to target multiple tumor radioresistance hallmarks for enhanced radiotherapy. After administration, M@HHPt actively targeted and smoothly accumulated in tumor cells by virtue of its innate homing abilities to realize efficient co-delivery of O2 and Pt(IV). O2 introduction induced hypoxia alleviation cooperated with Pt(IV) reduction caused glutathione consumption greatly amplified radiotherapy-ignited cellular oxidative stress. Moreover, the released cisplatin effectively hindered DNA damage repair by crosslinking with radiotherapy-produced DNA fragments. Consequently, M@HHPt-sensitized radiotherapy significantly suppressed the proliferation of lung cancer H1975 cells with an extremely high sensitizer enhancement ratio of 1.91 and the progression of H1975 tumor models with an excellent tumor inhibition rate of 94.7%. Overall, this work provided a feasible strategy for tumor radiosensitization by overcoming multiple radioresistance mechanisms.

9.
Reprod Domest Anim ; 59(4): e14559, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38591742

RESUMO

Pyometra is a prevalent and severe infectious disease that affects the reproductive systems of cattle worldwide. This study's main goal was to investigate the biomarkers for oxidative stress (OS), adiponectin, leptin and neopterin (NPT) in cows suffering from postpartum pyometra. The study also aimed to determine which bacteria were most commonly implicated in the development of the disease. A total of 74 cows with pyometra were examined and compared to a control group of healthy cows (n = 20). In comparison to the healthy control and post-treatment groups, the pyometra group showed higher mean values of leptin, adiponectin and malondialdehyde (MDA). In contrast, the glutathione (GSH) and superoxide dismutase (SOD) mean values were lower in the pyometra group as compared to the post-treatment and control groups. NPT levels in the post-treatment groups were lower than those in cows with pyometra but comparable to the healthy control group (p > .05). When compared to the other biomarkers, NPT, leptin and adiponectin showed higher sensitivity and specificity in identifying pyometra cases (AUC ≥0.99). The predominant bacterial isolates from the ptomtra-affected cows consisted of Escherichia coli (N = 29; 39.2%), Arcanobacterium pyogenes (N = 27; 36.5%) and Fusobacterium necrophorum (N = 13; 17.6%). Mixed infection was determined in nine samples (12.2%). Conclusively, OS, adiponectin, leptin and NPT play crucial roles in comprehending the development of postpartum pyometra in cows and have the potential to serve as biomarkers for the disease.


Assuntos
Doenças dos Bovinos , Piometra , Feminino , Bovinos , Animais , Piometra/veterinária , Leptina , Adiponectina , Período Pós-Parto , Estresse Oxidativo , Glutationa , Biomarcadores , Doenças dos Bovinos/microbiologia
10.
Artigo em Inglês | MEDLINE | ID: mdl-38593037

RESUMO

Thermodynamic therapy (TDT) based on oxygen-independent free radicals exhibits promising potential for the treatment of hypoxic tumors. However, its therapeutic efficacy is seriously limited by the premature release of the drug and the free radical scavenging effect of glutathione (GSH) in tumors. Herein, we report a GSH depletion and biosynthesis inhibition strategy using EGCG/Fe-camouflaged gold nanorod core/ZIF-8 shell nanoparticles embedded with azo initiator 2,2'-azobis[2-(2-imidazolin-2-yl) propane] dihydrochloride (AIPH) and L-buthionine-sulfoximine (BSO) for tumor-targeting photothermal (PTT) and thermodynamic therapy (TDT). This nanoplatform (GNR@ZIF-8-AIPH/BSO@EGCG/Fe, GZABEF) endows a pH-responsive release performance. With the 67 kDa lamin receptor (67LR)-targeting ability of EGCG, GZABEF could selectively release oxygen-independent free radicals in tumor cells under 1064 nm laser irradiation. More importantly, Fe3+-mediated GSH depletion and BSO-mediated GSH biosynthesis inhibition significantly boosted the accumulation of alkyl radicals. In 4T1 cells, GZABEF induced cancer cell death via intracellular GSH depletion and GSH peroxidase 4 (GPX4) inactivation. In a subcutaneous xenograft model of 4T1, GZABEF demonstrated remarkable tumor growth inhibition (78.2%). In addition, excellent biosafety and biocompatibility of GZABEF were observed both in vitro and in vivo. This study provides inspiration for amplified TDT/PTT-mediated antitumor efficacy.

11.
Int Immunopharmacol ; 132: 111940, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38593503

RESUMO

Glutathione metabolism (GM) is a crucial part of various metabolic and pathophysiological processes. However, its role in lung adenocarcinoma (LUAD) has not been comprehensively studied. This study aimed to explore the potential relationship between GM genes, the prognosis, and the immune microenvironment of patients with LUAD. We constructed a risk signature model containing seven GM genes using Lasso combined Cox regression and validated it using six GEO datasets. Our analysis showed that it is an independent prognostic factor. Functional enrichment analysis revealed that the GM genes were significantly enriched in cell proliferation, cell cycle regulation, and metabolic pathways. Clinical and gene expression data of patients with LUAD were obtained from the TCGA database and patients were divided into high- and low-risk groups. The high-risk patient group had a poor prognosis, reduced immune cell infiltration, poor response to immunotherapy, high sensitivity to chemotherapy, and low sensitivity to targeted therapy. Subsequently, single-cell transcriptome analysis using the GSE143423 and GSE127465 datasets revealed that the core SMS gene was highly enriched in M2 Macrophages. Finally, nine GEO datasets and multiple fluorescence staining revealed a correlation between the SMS expression and M2 macrophage polarization. Our prognostic model in which the core SMS gene is closely related to M2 macrophage polarization is expected to become a novel target and strategy for tumor therapy.

12.
Biochim Biophys Acta Mol Cell Res ; 1871(5): 119711, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574824

RESUMO

Enterotoxigenic Escherichia coli (ETEC) is recognized globally as a major gastrointestinal pathogen that impairs intestinal function. ETEC infection can lead to oxidative stress and disruption of intestinal integrity. The present study investigated the mechanism of increased oxidative stress and whether restoration of antioxidant defense could improve intestinal integrity in a piglet model with ETEC infection. Weaned piglets were divided into three groups: control, ETEC-infection and ETEC-infection with antibiotic supplementation. The infection caused a significant elevation of serum diamine oxidase activity and D-lactate levels coupled with a reduced intestinal (mid-jejunum) tight-junction protein expression, suggesting increased intestinal permeability and impaired gut function. The infection also inhibited nuclear factor erythroid 2-related factor 2 (Nrf2) activation, decreased the expression of glutathione synthesizing enzymes, superoxide dismutase-1 (SOD1), and heme oxygenase-1 (HO-1) in the intestine. This led to a decreased antioxidant glutathione level and an increased lipid peroxidation in the intestine and serum, indicating oxidative stress. The infection stimulated the expression of pro-inflammatory cytokines (IL-6, TNF-α). Antibiotic supplementation attenuated oxidative stress, in part, through restoration of glutathione levels and antioxidant enzyme expression in the intestine. Such a treatment enhanced tight-junction protein expression and improved intestinal function. Furthermore, induction of oxidative stress in Caco2 cells by hydrogen peroxide inhibited tight-junction protein expression and stimulated inflammatory cytokine expression. Glutathione supplementation effectively attenuated oxidative stress and restored tight-junction protein expression. These results suggest that downregulation of Nrf2 activation may weaken antioxidant defense and increase oxidative stress in the intestine. Mitigation of oxidative stress can improve intestinal function after infection.

13.
Oncol Rep ; 51(6)2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38639185

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is a highly aggressive, heterogeneous tumour usually caused by alcohol and tobacco consumption, making it one of the most common malignancies worldwide. Despite the fact that various therapeutic approaches such as surgery, radiation therapy (RT), chemotherapy (CT) and targeted therapy have been widely used for HNSCC in recent years, its recurrence rate and mortality rate remain high. RT is the standard treatment choice for HNSCC, which induces reactive oxygen species production and causes oxidative stress, ultimately leading to tumour cell death. CT is a widely recognized form of cancer treatment that treats a variety of cancers by eliminating cancer cells and preventing them from reproducing. Immune checkpoint inhibitor and epidermal growth factor receptor are important in the treatment of recurrent or metastatic HNSCC. Iron death, a type of cell death regulated by peroxidative damage to phospholipids containing polyunsaturated fatty acids in cell membranes, has been found to be a relevant death response triggered by tumour RT in recent years. In the present review, an overview of the current knowledge on RT and combination therapy and iron death in HNSCC was provided, the mechanisms by which RT induces iron death in tumour cells were summarized, and therapeutic strategies to target iron death in HNSCC were explored. The current review provided important information for future studies of iron death in the treatment of HNSCC.


Assuntos
Ferroptose , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/radioterapia , Neoplasias de Cabeça e Pescoço/tratamento farmacológico , Neoplasias de Cabeça e Pescoço/radioterapia , Terapia Combinada , Ferro
14.
Biotechnol Bioeng ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38629468

RESUMO

l-glutathione (GSH) is an important tripeptide compound with extensive applications in medicine, food additives, and cosmetics industries. In this work, an innovative whole-cell catalytic strategy was developed to enhance GSH production by combining metabolic engineering of GSH biosynthetic pathways with an adenosine-based adenosine triphosphate (ATP) regeneration system in Escherichia coli. Concretely, to enhance GSH production in E. coli, several genes associated with GSH and  l-cysteine degradation, as well as the branched metabolic flow, were deleted. Additionally, the GSH bifunctional synthase (GshFSA) and GSH ATP-binding cassette exporter (CydDC) were overexpressed. Moreover, an adenosine-based ATP regeneration system was first introduced into E. coli to enhance GSH biosynthesis without exogenous ATP additions. Through the optimization of whole-cell catalytic conditions, the engineered strain GSH17-FDC achieved an impressive GSH titer of 24.19 g/L only after 2 h reaction, with a nearly 100% (98.39%) conversion rate from the added  l-Cys. This work not only unveils a new platform for GSH production but also provides valuable insights for the production of other high-value metabolites that rely on ATP consumption.

15.
Environ Sci Technol ; 58(15): 6519-6531, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38578272

RESUMO

Paralytic shellfish toxins (PSTs) are widely distributed neurotoxins, and the PST metabolic detoxification mechanism in bivalves has received increasing attention. To reveal the effect of phase I (cytochrome P450)-II (GST)-III (ABC transport) metabolic systems on the PST metabolism in Azumapecten farreri, this study amplified stress on the target systems using rifampicin, dl-α-tocopherol, and colchicine; measured PST levels; and conducted transcriptomic analyses. The highest toxin content reached 1623.48 µg STX eq/kg in the hepatopancreas and only 8.8% of that in the gills. Inducer intervention significantly decreased hepatopancreatic PST accumulation. The proportional reductions in the rifampicin-, dl-α-tocopherol-, and colchicine-induced groups were 55.3%, 50.4%, and 36.1%, respectively. Transcriptome analysis showed that 11 modules were significantly correlated with PST metabolism (six positive/five negative), with phase I CYP450 and phase II glutathione metabolism significantly enriched in negatively correlated pathways. Twenty-three phase I-II-III core genes were further validated using qRT-PCR and correlated with PST metabolism, revealing that CYP46A1, CYP4F6, GSTM1, and ABCF2 were significantly correlated, while CYP4F11 and ABCB1 were indirectly correlated. In conclusion, phase I-II-III detoxification enzyme systems jointly participate in the metabolic detoxification of PSTs in A. farreri. This study provides key data support to profoundly elucidate the PST metabolic detoxification mechanism in bivalves.


Assuntos
Bivalves , Dinoflagelados , Animais , Rifampina/metabolismo , alfa-Tocoferol/metabolismo , Frutos do Mar/análise , Colchicina/metabolismo , Dinoflagelados/metabolismo
16.
Eur J Med Chem ; 270: 116387, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38593589

RESUMO

Activating apoptosis has long been viewed as an anti-cancer process, but recently increasing evidence has accumulated that induction of ferroptosis has emerged as a promising strategy for cancer therapeutics. Glutathione peroxidase 4 (GPX4) is one of the pivotal factors regulating ferroptosis that targeted inhibition or degradation of GPX4 could effectively trigger ferroptosis. In this study, a series of ML162-quinone conjugates were constructed by using pharmacophore hybridization and bioisosterism strategies, with the aim of obtaining more active anticancer agents via the ferroptosis and apoptosis dual cell death processes. Of these compounds, GIC-20 was identified as the most active one that exhibited promising anticancer activity both in vitro and in vivo via ferroptosis and apoptosis dual-targeting processes, without obvious toxicity compared with ML162. On one hand, GIC-20 could trigger ferroptosis in cells by inducing intracellular lipid peroxide and ROS accumulation, and destroying mitochondrial structure. In addition to GPX4 inhibition, GIC-20 can also trigger ferroptosis via proteasomal-mediated degradation of GPX4, suggesting GIC-20 may function as a molecule glue degrader. On the other hand, GIC-20 can also induce apoptosis via upregulating the level of apoptotic protein Bax and downregulating the level of anti-apoptotic protein Bcl-2 in HT1080 cells. Furthermore, GIC-20 also enhanced the sensitivity of resistant MIA-PaCa-2-AMG510R cells to AMG510, suggesting the great potential of GIC-20 in overcoming the acquired resistance of KRASG12C inhibitors. Overall, GIC-20 represents a novel dual ferroptosis/apoptosis inducer warranting further development for cancer therapeutics and overcoming drug resistance.


Assuntos
Compostos de Anilina , Ferroptose , Naftoquinonas , Neoplasias , Tiofenos , Humanos , Naftoquinonas/farmacologia , Apoptose
17.
J Sci Food Agric ; 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38597278

RESUMO

BACKGROUND: Browning is the key problem hindering the industrialization of pear wine. The use of high-yield glutathione Saccharomyces cerevisiae in the fermentation of pear wine can inhibit browning. Glutathione reductase (GR) can ensure the reduction of glutathione. Spore immobilization of enzymes is a new technology. It is a new attempt to apply spore-immobilized GR in combination with high-yield glutathione S. cerevisiae to inhibit browning of pear wine. RESULTS: Saccharomyces cerevisiae spore immobilization enzyme technology was used to immobilize GR in the spores of mutant S. cerevisiae dit1∆, osw2∆ and chs3∆ and wild-type S. cerevisiae. The enzyme activity of GR immobilized by chs3∆ spores was the highest of 3.08 U mg-1 min-1. The chs3∆ spore-immobilized GR had certain resistance to ethanol, citric acid, sucrose, glucose and proteinase K. Electron microscopy analysis showed that the spore wall of chs3∆ had moderate size holes, which might be the main reason why it immobilized GR with the highest enzyme activity. And the GR was immobilized between the prespore membrane and mannoprotein layer of the spore wall. When chs3∆ spore-immobilized GR (chs3∆-GR) was added to Dangshan pear wine fermented by high-yield glutathione S. cerevisiae JN32-9, the presence of chs3∆-GR could further protect amino acids, polyphenols and glucose from oxidation, thereby reducing the browning of the pear wine during storage by 47.32%. CONCLUSION: GR immobilized by S. cerevisiae spores was effective in inhibiting the browning of pear wine. The method was simple, green and effective and did not increase the production cost of pear wine. © 2024 Society of Chemical Industry.

18.
Free Radic Biol Med ; 218: 1-15, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574973

RESUMO

Sjogren's syndrome (SS) is an autoimmune disease characterized by dysfunction of exocrine glands, such as salivary glands. However, the molecular mechanism of salivary secretion dysfunction in SS is still unclear. Given the significance of glutathione peroxidase 4 (GPX4) in cellular redox homeostasis, we hypothesized that dysregulation of GPX4 may play a pivotal role in the pathogenesis of salivary secretion dysfunction observed in SS. The salivary gland of SS patients and the SS mouse model exhibited reduced expression of the ferroptosis inhibitor GPX4 and the important protein aquaporin 5 (AQP5), which is involved in salivary secretion. GPX4 overexpression upregulated and GPX4 knockdown downregulated AQP5 expression in salivary gland epithelial cells (SGECs) and salivary secretion. Bioinformatics analysis of GSE databases from SS patients' salivary glands revealed STAT4 as a key intermediary regulator between GPX4 and AQP5. A higher level of nuclear pSTAT4 was observed in the salivary gland of the SS mouse model. GPX4 overexpression inhibited and GPX4 knockdown promoted STAT4 phosphorylation and nuclear translocation in SGECs. CHIP assay confirmed the binding of pSTAT4 within the promoter of AQP5 inhibiting AQP5 transcription. GPX4 downregulation accumulates intracellular lipid ROS in SGECs. Lipid ROS inhibitor ferrostatin-1 treatment during in vitro and in vivo studies confirmed that lipid ROS activates STAT4 phosphorylation and nuclear translocation in SGECs. In summary, the downregulated GPX4 in SGECs contributes to salivary secretion dysfunction in SS via the lipid ROS/pSTAT4/AQP5 axis. This study unraveled novel targets to revitalize the salivary secretion function in SS patients.

19.
MedComm (2020) ; 5(4): e520, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38576455

RESUMO

Ferroptosis has been confirmed to be associated with various diseases, but the relationship between ferroptosis and atherosclerosis (AS) remains unclear. Our research detailly clarified the roles of ferroptosis in three continuous and main pathological stages of AS respectively (injury of endothelial cells [ECs], adhesion of monocytes, and formation of foam cells). We confirmed that oxidized low-density lipoprotein (ox-LDL), the key factor in the pathogenesis of AS, strongly induced ferroptosis in ECs. Inhibition of ferroptosis repressed the adhesion of monocytes to ECs by inhibiting inflammation of ECs. Ferroptosis also participated in the formation of foam cells and lipids by regulating the cholesterol efflux of macrophages. Further research confirmed that ox-LDL repressedthe activity of glutathione peroxidase 4 (GPX4), the classic lipid peroxide scavenger. Treatment of a high-fat diet significantly induced ferroptosis in murine aortas and aortic sinuses, which was accompanied by AS lesions and hyperlipidemia. Treatment with ferroptosis inhibitors significantly reduced ferroptosis, hyperlipidemia, and AS lesion development. In conclusion, our research determined that ox-LDL induced ferroptosis by repressing the activity of GPX4. Antiferroptosis treatment showed promising treatment effects in vivo. Ferroptosis-associated indexes also showed promising diagnostic potential in AS patients.

20.
Pharm Biol ; 62(1): 314-325, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38571483

RESUMO

CONTEXT: Cholangiocarcinoma with highly heterogeneous, aggressive, and multidrug resistance has a poor prognosis. Although babaodan (BBD) combined with cisplatin improved non-small cell lung cancer efficacy, its impact on overcoming resistance in cholangiocarcinoma remains unexplored. OBJECTIVE: This study explored the role and mechanism of BBD on cisplatin resistance in cholangiocarcinoma cells (CCAs). MATERIALS AND METHODS: Cisplatin-resistant CCAs were exposed to varying concentrations of cisplatin (25-400 µg/mL) or BBD (0.25-1.00 mg/mL) for 48 h. IC50 values, inhibition ratios, apoptosis levels, DNA damage, glutathione (GSH) levels, oxidized forms of GSH, total GSH content, and glutaminase relative activity were evaluated using the cell counting kit 8, flow cytometry, comet assay, and relevant assay kits. RESULTS: BBD-reduced the cisplatin IC50 in CCAs from 118.8 to 61.83 µg/mL, leading to increased inhibition rate, apoptosis, and DNA damage, and decreased expression of B-cell lymphoma-2, p-Yes-associated protein 1/Yes-associated protein 1, solute carrier family 1 member 5, activating transcription factor 4, and ERCC excision repair 1 in a dose-dependent manner with maximum reductions of 78.97%, 51.98%, 54.03%, 56.59%, and 63.22%, respectively; bcl2-associated X and gamma histone levels were increased by 0.43-115.77% and 22.15-53.39%. The impact of YAP1 knockdown on cisplatin-resistant CCAs resembled BBD. GSH, oxidized GSH species, total GSH content, and glutaminase activity in cisplatin-resistant CCAs with BBD treatment also decreased, while YAP1 overexpression countered BBD's effects. DISCUSSION AND CONCLUSION: This study provides a scientific basis for BBD clinical application and provides a new direction for BBD biological mechanism research.


Assuntos
Antineoplásicos , Neoplasias dos Ductos Biliares , Carcinoma Pulmonar de Células não Pequenas , Colangiocarcinoma , Neoplasias Pulmonares , Humanos , Cisplatino/farmacologia , Proteínas de Sinalização YAP , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Glutaminase/metabolismo , Glutaminase/farmacologia , Glutaminase/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Fatores de Transcrição/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Colangiocarcinoma/tratamento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/patologia , Neoplasias dos Ductos Biliares/tratamento farmacológico , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Resistencia a Medicamentos Antineoplásicos , Apoptose , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...